DEPARTMENT OF PHYSICS AND ASTRONOMY

Department Objectives

• To provide the background necessary for understanding the highly scientific age in which we live;
• To prepare students for careers and for graduate work in physics and other closely allied fields;
• To prepare teachers in subject matter and in methods for the teaching of Physics, Astronomy and related fields;
• To furnish pre-professional work for those preparing for a career in science and related fields.

Physics and Physical Science Major

Six options are available in this major:

 or Physics (http://catalog.unk.edu/catalog-archive/2019-2020/undergraduate/departments-programs/physics-astronomy/physics-ba) - Bachelor of Science Degree
 or Physical Science (http://catalog.unk.edu/catalog-archive/2019-2020/undergraduate/departments-programs/physics-astronomy/physical-science-bs) - Bachelor of Science Degree
5. Astronomy (http://catalog.unk.edu/catalog-archive/2019-2020/undergraduate/departments-programs/physics-astronomy/astronomy-bs) - Bachelor of Science Degree
6. Astrophysics Comprehensive (http://catalog.unk.edu/catalog-archive/2019-2020/undergraduate/departments-programs/physics-astronomy/astrophysics-comprehensive-bs) - Bachelor of Science Degree
7. Physics 7-12 Teaching Subject Endorsement (http://catalog.unk.edu/catalog-archive/2019-2020/undergraduate/departments-programs/physics-astronomy/physics-7-12-teaching-subject-endorsement-bse) - Bachelor of Science in Education Degree

Tim Reece, Chair
Professor: Kenneth Trantham
Associate Professor: Adam Jensen, Timothy Reece
Assistant Professor: Said Abushamleh, Jeremy Armstrong, Joel Berrier, Diganta Dutta, Mariana Lazarova

Engineering (ENGR)

ENGR 10 – Freshman Engineering Seminar 0 credit hours
Overview of the engineering field as well as major specific information. Information will be provided to help with transitional needs to UNL and the college of engineering (time management, study skills, and resources), involvement opportunities (student organizations, research, and study abroad), tours of engineering facilities for experiential learning, and interactive learning to increase business knowledge and skills.

ENGR 101 – Introduction to Engineering 3 credit hours
Students will examine relevant and practical industrial and commercial engineering applications to gain necessary engineering skills that will help them succeed as a student as well as a professional engineer. A variety of engineering disciplines will be highlighted and discussed, as well as topics in the underlying physical, chemical, and biological scientific principles and processes related to each topic. The class will use a specified focus area that involves real world applications to aid in the conceptualization and learning of the course material.
Corequisite: MATH 103 or MATH 115 or MATH 202.

ENGR 130 – Computer Aided Drafting for Mechanical Engineering 3 credit hours
Principles and accepted practices of geometric design in mechanical engineering. Computer generation of 2D and 3D models for mechanical systems. Introduction to engineering design practices such as specifications, dimensioning, and tolerance.
Prerequisite: ENGR 101

ENGR 215 – Engineering Circuits I 4 credit hours
Introduction to electrical engineering circuit theory. Kirchhoff's laws and circuit analysis theorems applied to steady state DC resistive circuits. Analysis of transient RLC and sinusoidal steady-state circuits.
Corequisite: PHYS 276 and MATH 202.

ENGR 216 – Engineering Circuits II 4 credit hours
Steady state power calculations for sinusoidal single-phase and balanced three-phase circuits. Analysis of circuits containing mutual inductance. Advanced analysis of active and passive circuits in both the time and frequency domain. Introduction to fundamentals of semiconductor theory and their application to p-n junction devices. Kirchhoff's laws and circuit analysis theorems applied to steady state diode and transistor circuits. Applications of operational amplifiers. Lecture 3 hours, lab 1 hour.
Prerequisite: ENGR 215

ENGR 223 – Engineering Statics 3 credit hours
Analysis of forces, using vector algebra, acting on particles and rigid bodies in static equilibrium; equivalent systems of forces; friction; centroids and moments of inertia; introduction to energy methods.
Prerequisite: PHYS 275 and ENGR 101.
Corequisite: MATH 202.
ENGR 325 – Mechanics of Materials 3 credit hours
Stresses and strain in solids, uniaxial loading, linear elasticity, material behavior, stresses in beams, pressure vessels, Torsion of circular shafts, bending of beams of symmetrical section, column buckling and elastic instability.
Prerequisite: ENGR 223.
Corequisite: MATH 260.
Additional Course Fee Required

ENGR 373 – Engineering Dynamics 3 credit hours
Basic theory of engineering mechanics, using calculus, involving the displacement, velocity, and acceleration of particles, rigid bodies, and systems of particles. Newton's Laws, work and energy relationships, principles of impulse and momentum are applied to the solution of kinematic engineering problems.
Prerequisite: ENGR 223.
Corequisite: MATH 260.

Physics (PHYS)

PHYS 100 – Physical Science 3 credit hours
An introduction to the natural laws governing the physical world, with emphasis upon the development of these laws and their effect upon man. The course should instill a basic understanding of physical science; the scientific methods of physics, chemistry, geology, and astronomy. With this understanding, the student should be able to solve simple problems dealing in these areas. The student should realize how these areas are used in modern technology. Finally, the student should be able to make informed choices in their daily lives regarding issues of science and technology.
Prerequisite: ACT Math Score of 17 or above or completion of MATH 101 or above with a grade of C or above.
Corequisite: PHYS 100L.

PHYS 100L – Physical Science Laboratory 1 credit hour
A laboratory experience in physical science (mechanics, thermodynamics, chemistry, electricity, magnetism, optics, and astronomy) to accompany PHYS100
Corequisite: PHYS 100.
Additional Course Fee Required

PHYS 107 – Physical Science for Elementary Teachers 4 credit hours
An introduction to physics and chemistry designed for Elementary Education majors where basic concepts will be emphasized. The laboratory will focus on experiments that can be used to illustrate the essentials of the disciplines. Laboratory safety, scientific methodology, and problem solving will also be emphasized.
Prerequisite: MATH ACT score of 17 or greater or MATH 101 with a grade of C or above.

PHYS 123 – Freshman Physics Seminar 3 credit hours
Introductory course in physics, offering the students an overview of careers in physics and the research of the faculty in the Department of Physics and Astronomy. The course will help students succeed in physics by helping them develop problem solving and mathematical skills. An experimental approach will be taken to a broad range of exciting contemporary ideas. The topics covered range from simple geometric optics, the speed of light, and analysis of motion, to the photoelectric effect. This is a studio course, a blend of laboratory and lecture format, with a focus on a hands-on approach to the topics.
Corequisite: MATH 103 or MATH 115 or MATH 202.

Phys 131H – Newton's Universe 4 credit hours
This course is designed to provide students with an understanding and appreciation of science as a human activity, its historical role in shaping our self and world views, its impact on the human condition, and its philosophical implications for their ultimate destiny. An associated laboratory, using inquiry-oriented activities, allows students to experience the process of science.
Prerequisite: MATH 102 or higher.
Corequisite: PHYS 155L.

Phys 155 – Science of Sound and Music 3 credit hours
This course is designed for students majoring in Music, Speech and Hearing, Audio Technology, and Telecommunications, as well as other students having a general interest in the physics of sound and music.
Prerequisite: MATH 102 or higher.
Corequisite: PHYS 155.

Phys 155L – Science of Sound and Music Laboratory 1 credit hour
A laboratory experience into the physical science of sound and music to accompany PHYS155.
Corequisite: PHYS 155.

Phys 188 – GS Portal 3 credit hours
Students analyze critical issues confronting individuals and society in a global context as they pertain to the discipline in which the Portal course is taught. The Portal is intended to help students succeed in their university education by being mentored in process of thinking critically about important ideas and articulating their own conclusions. Students may take the Portal in any discipline, irrespective of their major or minor. Satisfies the General Studies Portal course requirement. Students may take their Portal course in any discipline. Students who transfer 24 or more hours of General Studies credit to UNK are exempt from taking a portal course.
Total Credits Allowed: 6.00
Prerequisite: MATH 102 or Math ACT score of 20 or greater and ENG 101 or English ACT score of 15 or greater and freshman or sophomore standing.

Phys 201 – Earth Science 4 credit hours
Inquiry activities are used to teach basic concepts of meteorology, geology, and astronomy. Emphasis is placed on process and critical thinking skills as well as on environmental issues.
Additional Course Fee Required

Phys 205 – General Physics I 4 credit hours
Students will study the fundamental laws of mechanics, thermodynamics, and waves at a level suitable for those with knowledge of algebra. We will develop concepts and formalism in these areas. With this understanding, the student will be able to solve simple problems. Also, the student should realize how these areas are used in modern technology and connected to other disciplines. The primary audience for this class are those not specifically interested in advanced work in physics or chemistry.
Prerequisite: MATH 102 with a grade of B+ or above or MATH 103 with a grade of B+ or above or MATH 115 or Math ACT score of 20 or above.
Corequisite: PHYS 205L.
PHYS 205L – Physics I Laboratory 1 credit hour
A laboratory experience in mechanics, thermodynamics, and waves to accompany PHYS 205.
Corequisite: PHYS 205.
Additional Course Fee Required

PHYS 206 – General Physics II 4 credit hours
A continuation of PHYS 205. The course will present an elementary understanding of electricity and magnetism, light and optics, relativistic physics and quantum physics. We will develop concepts and formalism in these areas. With this understanding, the student will be able to solve simple problems. Also, the student will realize how these areas are used in modern technology and connected to other disciplines.
Prerequisite: PHYS 205 and PHYS 205L.
Corequisite: PHYS 206L.

PHYS 206L – Physics Laboratory II 1 credit hour
A laboratory experience in electricity, magnetism, and optics to accompany PHYS 206.
Corequisite: PHYS 206.
Additional Course Fee Required

PHYS 209 – Meteorology 3 credit hours
Basic principles of the science associated with the atmosphere including atmospheric structure, dynamics, and processes. Topics include atmospheric energy balance, cloud and precipitation process, dynamical stability, local and global wind dynamics, weather forecasting, meteorological instruments, storm development, climate change, and applications of meteorology to agriculture, aviation, and environmental issues.
Prerequisite: Math 102 or permission of instructor. Enrollment not allowed in PHYS 209 if GEOG 209 has been completed.

PHYS 210 – Astronomy 3 credit hours
The goal of this course is to introduce students to the growth of knowledge about our universe. Topics include: the Earth, Moon, planets, Sun, stars, galaxies and cosmology. The course uses the resources of the UNK planetarium and observatory.
Prerequisite: MATH 102

PHYS 210L – General Astronomy Laboratory 1 credit hour
Fundamentals of astronomical observation, the use of introductory astronomical instruments, and application of charts and almanacs to finding one’s way about the night sky.
Prerequisite: Concurrent enrollment or completion of PHYS 210 or PHYS 211 or consent of instructor.

PHYS 211 – Planetary Astronomy 3 credit hours
Examination of the Sun’s family of nine planets, attendant satellites, and interplanetary debris; processes at work in the Solar System; search for planets elsewhere in the Galaxy. This course uses the resources of the UNK planetarium and observatory.

PHYS 213 – Electrical Circuits 3 credit hours
Introduction to electrical circuit theory and analysis techniques. DC circuits and transient circuit responses are studied with an emphasis on computer-aided simulation and analysis. Inductors, capacitors and transformers are studied within the context of transient circuit responses.
Prerequisite: MATH 202

PHYS 213L – Introductory Electrical Laboratory I 1 credit hour
Take concurrently with PHYS 213.
Corequisite: PHYS 213.
Additional Course Fee Required

PHYS 215 – General Physics I (Calculus) 4 credit hours
Students will study the fundamental laws of mechanics, thermodynamics, and waves at a level suitable for those with knowledge of calculus, and prepares the student for advanced courses in physics. The primary audience for this class consists of those planning advanced work in physics, engineering, or a related area. Lecture 4 hours.
Prerequisite: Concurrent enrollment or completion of MATH 115.
Corequisite: PHYS 275L.

PHYS 215L – General Physics I (Calculus) Laboratory 1 credit hour
A laboratory experience in mechanics, thermodynamics, and waves to accompany PHYS 215.
Corequisite: PHYS 275.
Additional Course Fee Required

PHYS 216 – General Physics II (Calculus) 4 credit hours
Students will study the fundamental laws of electrostatics, magnetism, optics, and relativity at a level suitable for those with knowledge of calculus, and prepares the student for advanced courses in physics. The primary audience for this class consists of those planning advanced work in physics, engineering, or a related area. Lecture 4 hours.
Prerequisite: PHYS 275 and PHYS 275L.
Corequisite: PHYS 276L.

PHYS 275 – General Physics I (Calculus) 4 credit hours
Students will study the fundamental laws of mechanics, thermodynamics, and waves at a level suitable for those with knowledge of calculus, and prepares the student for advanced courses in physics. The primary audience for this class consists of those planning advanced work in physics, engineering, or a related area. Lecture 4 hours.
Prerequisite: Concurrent enrollment or completion of MATH 115.
Corequisite: PHYS 275L.

PHYS 276 – General Physics II (Calculus) 4 credit hours
Students will study the fundamental laws of electrostatics, magnetism, optics, and relativity at a level suitable for those with knowledge of calculus, and prepares the student for advanced courses in physics. The primary audience for this class consists of those planning advanced work in physics, engineering, or a related area. Lecture 4 hours.
Prerequisite: PHYS 275 and PHYS 275L.
Corequisite: PHYS 276L.

PHYS 276L – General Physics II (Calculus) Laboratory 1 credit hour
A laboratory experience in electricity, magnetism, and optics to accompany PHYS 276.
Corequisite: PHYS 276.
Additional Course Fee Required

PHYS 289 – Review in Physics 2 credit hours
The Review in Physics covers an overview of MCAT tests and test-taking strategies and physics content, with an emphasis on concepts application to the problem solving. Tested physics concepts include Newtonian mechanics, thermodynamics, magnetism, light and optics, nuclear physics, and atomic phenomena.
Prerequisite: Grade of C or above in PHYS 205 and PHYS 205L and PHYS 206 and PHYS 206L.

PHYS 299 – Freshman Seminar in Physics: History, State of the Art and Perspectives 1 credit hour
This seminar is a non-mathematical discussion of 21st century physics (potentially including topics such as relativity, chaos, elementary particles, etc.)

PHYS 301 – Advanced Physical Science 4 credit hours
Inquiry activities are used to teach concepts in the areas of mechanics, light, electricity, magnetism and microchemistry. The computer is used to aid in instruction in all of these areas. Emphasis is placed on the development of process and critical thinking skills.
Additional Course Fee Required

PHYS 323 – Analog and Digital Electronics 3 credit hours
An introduction to the analysis and design of analog and digital electronic circuits. Laboratory activities include both computer analysis and hardware implementation of transistor, operational amplifier, digital and microcontroller circuits. Lecture 1 hour, laboratory 2 hours.
Prerequisite: PHYS 276 and PHYS 276L or permission.
Additional Course Fee Required

PHYS 346 – Modern Physics I 4 credit hours
A more advanced study of selected topics in electricity and modern physics including introductory concepts in atomic and nuclear physics.
Prerequisite: PHYS 276 and PHYS 276L
Additional Course Fee Required
PHYS 347 – Modern Physics II 4 credit hours
A continuation of PHYS 346. Introductory concepts in quantum mechanics and quantum statistics will be treated. Other areas of emphasis will include atomic structure, solid state, and nuclear physics. Prerequisite: PHYS 346
Additional Course Fee Required

PHYS 350 – Astrophysics I 3 credit hours
This course addresses how the principles of physics can be used to understand a variety of astrophysical objects and phenomena. Topics include the physics of photon emission and absorption, stellar evolution of stars from birth to death including stellar end-states such as black holes and supernovae, clusters of stars, and the structure of the Milky Way. Prerequisite: PHYS 346 or permission of instructor

PHYS 351 – Astrophysics II 3 credit hours
This course continues the study of astrophysical objects and phenomena. Topics include galactic astronomy, large scale structure of the Universe, and cosmology. Prerequisite: PHYS 350

PHYS 350 – Astrophysics I 3 credit hours
This course addresses the computational methods used in astronomy. Modern astronomy has moved beyond observations made locally at telescopes. Handling large datasets, using scripts to mine data, and computational modeling methods are all important tools for modern astronomers. Topics addressed in this course will include writing scripts in Linux and Python, modeling data, presentation of data, mining data from large surveys, and computational analysis methods. The lab will focus on the use of computational tools. Prerequisite: PHYS 346 or permission of instructor

PHYS 351 – Astrophysics II 3 credit hours
This course addresses the observational methods used in astronomy. Topics addressed will include photon statistics, imaging, photometry, spectroscopy, and telescope design. An emphasis will be placed on practical applications of these topics. The lab will focus on the use of the UNK telescope to make observations to measure stellar properties. Prerequisite: PHYS 360

PHYS 388 – GS Capstone 3 credit hours
An interdisciplinary experience where students apply the knowledge, cognitive abilities, and communication skills they have gained from General Studies in designing and completing an original project or paper. Students employ methods and interpretive means of two or more disciplines to integrate knowledge and synthesize their results. Satisfies the General Studies capstone course requirement. Students may take their Capstone course in any discipline. Prerequisite: Junior or senior level standing or within 6 hours of completing general studies requirements.

PHYS 388L – GS Capstone Lab 1 credit hour
Corequisite: PHYS 388.
Additional Course Fee Required

PHYS 399 – Internship 1-4 credit hours
This course emphasizes the professional development of the student in the area of the student’s interest. Students should contact a department faculty member who would agree to supervise the work for the semester. A written work plan must be approved by the department chair. Total Credits Allowed: 4.00

PHYS 402 – Analytic Mechanics 4 credit hours
Advanced applications of classical nonrelativistic mechanics. Topics include dynamics of a system of particles, motion in noninertial reference frames, properties of three-dimensional rotations and tensors, dynamics of rigid bodies, and coupled oscillations. The course ends with an introduction to the mechanics of continuous media and applications to fluid dynamics and elasticity. Prerequisite: PHYS 410 and MATH 305 or permission of instructor

PHYS 407 – Electricity & Magnetism 4 credit hours
Review of Maxwell’s equations, electromagnetic fields, and vector calculus. Physical and mathematical properties of static electric and magnetic fields. Topics include electrostatics, electric potential, energy of the electrostatic field, conductors, Laplace’s and Poisson’s equations, boundary value problems, multipole expansions, dielectric media, magnetostatics, the vector potential, electromagnetic waves (in a vacuum, in infinite linear media, and in bounded regions), optical dispersion in material media, and electromagnetic radiation. Prerequisite: PHYS 410 and MATH 305 or permission of instructor

PHYS 410 – Mathematical Techniques in Physics I 3 credit hours
A formal development of selected topics from infinite series, determinants and matrices, partial differentiation, vector analysis, Fourier series, functions of a complex variable, and coordinate transformations. Prerequisite: MATH 260 or permission of instructor

PHYS 411 – Mathematical Techniques in Physics II 3 credit hours
A development of series solution of differential equations, partial differential equations, tensor analysis, asymptotic series, integral transforms, and operators. Prerequisite: PHYS 410

PHYS 419 – Quantum Mechanics 4 credit hours
A formal development of the principles of quantum mechanics. The mathematics of Hamiltonian Mechanics are presented as a bridge from Classical Physics to Quantum Physics. Topics include time-dependent quantum mechanics and spectroscopy, perturbation theory, two-level systems, light-matter interactions, relaxation in quantum systems, correlation functions and linear response theory, applications to atomic and molecular physics. Prerequisite: PHYS 410

PHYS 420 – Advanced Physics Laboratory 3 credit hours
An application and investigation of advanced physical topics in the laboratory. Techniques of experimental physics, such as computerized instrumentation, vacuum technology, optics, and electron optics will be applied to investigate various areas of advanced physics. Proper data reduction and analysis will be used to yield meaningful measurements. Intended as laboratory course to prepare the student for more advanced, independent experimental lab work. Laboratory 3 hours. Prerequisite: PHYS 410 and PHYS 323

PHYS 423 – Electronics 4 credit hours
A continuation of PHYS 323 covering feedback, noise reduction, high frequency circuits and electro-optical devices. Prior completion of ITEC 482 is recommended. Prerequisite: PHYS 323 or equivalent

PHYS 430 – Optics 3 credit hours
Geometric and wave optics including optical instruments. Prior completion of MATH 305 is recommended. Prerequisite: PHYS 276 and PHYS 276L and PHYS 410
PHYS 435 – Solid State Physics 3 credit hours
An introduction to the physics governing the crystalline state of matter. Modern theories describing lattice vibrations, energy bands, crystal binding, and optical properties are presented. These ideas are then applied to the understanding of technologically important areas such as superconductivity, doped semiconductors, ferroelectric materials, and photorefractivity.
Prerequisite: PHYS 410

PHYS 440 – Thermodynamics and Statistical Mechanics 3 credit hours
The study of temperature, heat and work, the laws of thermodynamics, heat engines, including the Carnot, Cycle, Maxwell relations, and an introduction to statistical thermodynamics.
Prerequisite: Concurrent enrollment or completion of PHYS 410

PHYS 446 – Modern Physics for High School Teachers 4 credit hours
An advanced study of selected topics in electricity and modern physics including introductory concepts in atomic and nuclear physics. Research or design of educational projects will be used to aid in explaining these areas.
Prerequisite: Either PHYS 205 and PHYS 205L and PHYS 206 and PHYS 206L or PHYS 275 and PHYS 275L and PHYS 276 and PHYS 276L.

PHYS 456 – Regional Field Studies 1-4 credit hours
Includes visits to specialized research or scientific centers, or expeditions to observe or study special events such as solar eclipses.
Total Credits Allowed: 4.00

PHYS 471 – Methods in Secondary Science Teaching 3 credit hours
This course focuses on the latest trends in science teaching. Emphasis is placed on designing demonstrations, laboratory investigations, test items and other components that promote process and critical thinking skills. Computers are utilized extensively in these activities.
Prerequisite: Admission to Teacher Education Enrollment in PHYS 471 is not allowed if BIOL 471 has been completed.

PHYS 472 – Science Curricula 1-3 credit hours
History of science curricula, introduction to the specifics of selected science curricula, experience working with science curricula materials in junior high or senior high school as well as exposure to several teaching strategies.
Total Credits Allowed: 3.00

PHYS 490 – Special Topics 1-4 credit hours
Topics are studied which are not covered in other courses offered by the department. The format will vary depending upon the nature of the topic and the instructor but will typically be a lecture/demonstration format with laboratory work included as appropriate.
Department Consent Required
Total Credits Allowed: 9.00

PHYS 495 – Research in Physics 1-3 credit hours
Students work on an undergraduate research project under the guidance of a faculty member.
Department Consent Required
Total Credits Allowed: 6.00

PHYS 496 – Practicum in Physics Education 1-3 credit hours
For each credit hour the student will spend approximately three hours per week working as a classroom assistant in an activity-based class and/or doing physics education research.
Total Credits Allowed: 3.00
Prerequisite: PHYS 205 and PHYS 205L and PHYS 206 and PHYS 206L and PHYS 275 and PHYS 275L and PHYS 276 and PHYS 276L or permission of instructor.

PHYS 498 – Senior Seminar in Physics 3 credit hours
A senior capstone class for physics majors, completing research started in previous semesters of PHYS495. Students will write a senior paper and make a presentation at the end of the semester based on their undergraduate research experiences.
Prerequisite: 3 hours of PHYS 495

PHYS 499 – Problems in Physical Science 1-3 credit hours
Independent investigation of physical science problems. Three hours of laboratory work each week for each hour of credit.
Department Consent Required
Total Credits Allowed: 3.00